
How to Bring Your Business Applications to the Web

0

How to Bring Your Business Applications to the Web

By Heather Gately

Executive Summary

This article will take you through the migration of your current or legacy business applications to a Web
environment. It focuses on the benefits of choosing this direction, and the pros and cons of the four most
popular methods of accomplishing this including Screen-scrapers, In-house Development, Outside Consulting,
and Development Tools.

How to Bring Your Business Applications to the Web

1

“If it ain’t broke.”

Regrettably, it often seems when it
comes time to address IT, outdated
business systems are the
elephant—make that mastodon—in
the room. If you talk about it, you
might have to actually do
something about it.

And so much time and money and
energy has been invested in these
expensive business systems bought
eons ago, and often the software
running on them is completely
unsupported, written by defunct
companies, or long-lost employees.
Big businesses are being run on the
backs of ancient machines, and
there is a very noticeable shortage
of mechanics.

Why not just scrap everything
and start over?

According to the Gartner Group,
between 60 and 80 percent of an
average company’s IT budget is
spent on maintaining existing
systems and the applications that
run on them. So, why not just use
that money toward brand new
systems?

Darcy Fowkes, Research Director of
Internet Business Practice,
Aberdeen Group:1 “The fact that
there is two trillion dollars’ worth
of mainframe applications in
corporations today housing
approximately 70 percent of all
critical business logic and data
make them valuable sources to
leverage.”

So, even if the IT world could make
a decision on what all future
technologies are going to be, and
conform everyone to one path, it
would take billions of dollars to
recreate all of the applications.
It’s also taken years to get all the
bugs out of these “current”
applications. Starting over from
scratch in a new environment runs
the risk of major revenue losses

due to business incontinuity and
customer frustrations.

If you haven’t figured out the
perfect solution yet, you’re in good
company. No matter how “ahead
of the game” your company may
appear to the outside world,
technology is approaching such a
pace that it is almost impossible to
keep up. Somewhere, in some
system, you are already out of
date.

Making the move:
Justification.

Since you can’t win every battle,
the only way to win the war is to
do a proper evaluation and address
what areas would best benefit your
business to modernize. Here are a
few common areas of scrutiny:

Let’s say you are a
manufacturer…Production is your
bread and butter…but inventory
might be kept on various systems
in different plants running a
decade-old MRP software package
that demands constant
maintenance.

For example, let’s say you have an
application that has the ability to
set a separate and unique price for
each of your products for every
single one of your clients. How
much time did it take to fine tune
that application? What would it
take to start over and get it right
again?

How would you go about updating
it efficiently while going on with
your business without interruption?
How much of your day-to-day
applications are home-grown?
What if the vendor that brought
you your MRP went out of business,
and was unable to support its
products? Where does that leave
you? Is that your situation? Will it
be tomorrow, or next year?

Maybe your main focus is not
production, but instead you are
working toward streamlining your
accounting department. But,
comparing reports between
different plant or office locations
is completely apples to oranges.
Reports in such situations are often
written for disparate systems, by
individual IT departments with
different expertise and/or
agendas. To compound the
problem, by the time you get the
information, it might be two weeks
old or more because of an IT
application backlog. How stale are
the numbers your decision-makers
are basing their decisions on? Do
all the necessary reports relate to
one another? Are your company
captains being forced to navigate
by guesswork and old coordinates?

Are your company captains

being forced to navigate by

guesswork and old

coordinates?

Then there’s CRM. CRM, or
Customer Relationship
Management, is one of the most-
talked about buzz-terms of the
day, but the concept is age-old: it
all comes down to service. If your
customer service representatives
are not knowledgeable, helpful,
and efficient, your customers will
go elsewhere. It’s as simple as
that. Do you find that good
Customer Service Representatives
(CSRs) are hard to find, and even
harder to train? CSRs often have
to be trained in complex interfaces
that are non-intuitive and can take
months to master.

Even with a client/server solution,
management often asks CSRs to
navigate the ever growing, twisting
and turning, forest of directory

How to Bring Your Business Applications to the Web

2

trees, extensive business rules, and
query limitations. And, at the same
time, try to relay information to
the customer with a smile.

Even if you are only trying to
answer one of the previous
hypotheticals, it remains mission-
critical to leverage your existing
systems. Your best bet is to
modernize your current
applications by bringing them to
the Web with a platform-
independent solution such as Java
servlets. Browser-based
applications present you with the
most flexibility in distribution,
data accuracy, and ease-of use,
while Java servlets protect your
future, allowing all database and
platform decisions going forward to
be yours to make.

Here are some of the positives
to bringing applications to
the Web with Java.

• You can serve them directly
from the hardware you’ve
already invested in, so there is
no added hardware cost.

• Distribution and operational
costs associated with mailing,
faxing and printing reports,
invoices and bills of lading will
go down dramatically.

• Business decisions will be based
on accurate numbers made
from reports and queries
accessing live data.

• Remote users such as sales
people in the field can securely
access live data including
inventory, pricing, and order
tracking from wherever they
are, including from their cell
phones. Imagine the time
savings!

• Users and IT alike can focus on
tasks that are mission-critical
by giving authorized users
secure access to online reports
and data instead of having to
make requests through IT and
tying up development staff.

• You will realize a fast ROI from
so-called soft costs including
reduction of IT man hours,

training for end-users and
developers, lost orders,
“temporary” software fixes,
paper, ink, pre-printed forms,
etc.

So, what is the best way to
get to Java and the Web?

Well, you have four basic choices if
you are trying to bring your current
apps into a browser-based
environment via Java. You can:

• elect to use a “Screen-scraper”
software

• train current, or hire new staff
to re-write your applications in-
house in Java

• hire outside consultants to re-
write applications or customize
package software for the Web
in Java

• purchase a software tool to
modify your applications
yourself without a Java
prerequisite.

There are pros and cons to each.
Here’s the run down.

Screen-Scrapers

“Screen-scrapers” are software
products that allow PCs to
intercept character-based data,
older usually, and present it in a
Web-like interface. In basic terms,
it automatically turns what looks
like text on screen (remember
programs where you needed to use
the F-buttons, like F7 or F10?) into
what looks similar to a Web page.
Screen scrapers can often present
themselves as the easiest way to
convert older applications into a
Web application. The popular
claim for screen-scrapers is that
with the push of a button, the
application is translated to an
Internet Language, usually Java,
and ready for the Web.

And, if you’re not talking about a
complex business application, it
usually is. Once purchased,

though, developers often realize
that it is necessary to go in and
hand-code many features of their
applications in order for the
screen-scraper to work. But, by
then it’s too late. Also, because
they sometimes rely on older Java,
they can require Java to be
downloaded onto the PCs of those
users that want to access the
application. These versions are
traditionally very Java-heavy which
means that they tend to run very
slow.

Common problems with screen
scrapers include: server time-outs,
browser-compatibility problems,
software plug-in warnings, and
complications with firewalls. They
also don’t look much like they
belong on a Web page, and are not
very intuitive in navigation because
they are based entirely on an old
character-based application.

Screen-scrapers are a good solution
if you have an extremely simple
application, are looking for a
short-term solution, and are
prepared to spend in the
neighborhood of $100,000.

In-House Java Development

Use your highly skilled IT staff to
your advantage. After all, isn’t
that what you are paying them for?
Why pay out extra money for
contracting or hiring a team of
Java developers, when you can
train your current IT staff on a
popular open source language, like
Java, and get them working for
you!

They have priceless business
expertise building your
applications and they know the ins
and outs of your business.

This seems like perhaps the most
suitable solution. After all, these
people know the original
applications inside and out, many
being built by their capable hands.
And, learning a new skill set like

How to Bring Your Business Applications to the Web

3

this would be an absolute up-side
to working all those late hours
doing double-duty maintaining the
current backlog of applications and
reports while building all new
applications and reports for the
Web.

The problem is…time. According to
the Butler Group2 , it is estimated
that to retrain a developer in Java
takes a minimum of nine months
and has a significant failure rate.
This is compounded by significant
turnover when recently trained
staff take their new skills
elsewhere. The cost of this training
needs to be taken into account, in
addition to the expansion of the
application backlog, the learning
curve, development time,
experience in taking a Java project
from the early planning stages to a
successful close within a
reasonable timeframe, and the
cost of staff turnover.

Also, keep in mind that the
learning curve could be company-
wide. According to another study
reported by the Butler Group:
“Further evidence is provided by
the forecast that for over 65
percent of companies, their first
generation e-business development
work will be scrapped and re-built
within two years, often at a huge
cost.”

In-house Java coding is your best
bet if you can say without a doubt
that your IT people won’t take the
training and run, and they have
extensive C++ or Java project
management experience. Most
importantly you need to also say,
without a doubt, that this
intricately-designed, expensive,
“custom-built car” that you’re
aiming for is not on its way to
obsolescence within two years.

What happens if you put all your
eggs in this Java basket, and
something new comes along?

Consulting

Okay, consultants will charge you
more than a salaried employee for
the privilege of contracting with
you, but they ARE the Java experts
specific to what you need. Would
you want your general practitioner
performing your brain surgery?

You just need to make sure you’re
hiring the right consultant.
Consultants come in all shapes and
sizes, and like surgeons; they
sometimes have a bit of a God
complex.

Just remember the following: if
you go to the doctor to cure your
cold, and he wants to cut out your
brain, you might want a second
opinion. Same with consultants.

It’s estimated that to retrain a

developer in Java takes a

minimum of nine months and

has a significant failure rate.

There are several things to watch
out for in working with
consultants. The first is of course,
references and expertise. It is your
responsibility to know that they
know what they are doing because
you’re letting them loose on the
nerve center of your business. It’s
a dirty little secret in the
consulting business that $150/hr
will often get you a fresh-faced
college graduate who is “learning
as he goes” on your dime.

Make sure that no matter whom
you select, they stick to their
schedule. In the old days,
consultants would sit down with
clients and charge high hourly
rates to cover time and materials,
but only for a limited period of

time. In today’s massive IT
marketplace, “time-and-materials
billing” can be a financial albatross
when numerous consultants are
working at a customer site on an
“open-ended” project. These
consultants get paid for every hour
they put into a project, regardless
of whether the project is
successful or on time. Make sure
you cover yourself in your
contract.

Additionally, some corporate
consultants are rewarded for
selling follow-on work to customers
so that once the company gets its
foot in the door, it can stay there
as long as possible. KPMG calls this
its client-for-life strategy,
according to Mark Lee, senior vice
president of product solutions for
KPMG in McLean, Virginia.3 CIO
article, July 15, 2002, “Take
Control of Your Consultants”

Also, consider this, they may know
Java, but they probably do not
know a thing about the languages
and applications you are trying to
modernize. You may find that they
are re-inventing the wheel on your
dime. Make sure you keep tabs on
project goals and plans and
timelines at all times.

Hiring IT consultants will likely cost
a bundle, but that solution will get
you to where you want to go, and
you don’t have to pay for internal
training, worry about turnover, or
take time away from your busy
schedule. Of course, you have
limited control over how long it
will take, and since many of you
choose consulting because you
don’t have the expertise that you
are paying a premium for, do you
feel comfortable questioning their
methods? Do you feel comfortable
maintaining the final solution?
Once it’s completed, if you ever
have a problem with it, who else
will know how to fix it?

In that sense, some other vendor-
based consultants, once they get
their product’s foot in the door,

How to Bring Your Business Applications to the Web

4

also try to “remain a part of their
client’s lives forever.” They attach
themselves to the wallet of a
perfectly healthy corporation, and
over time purposely create
dependencies on certain products.
Whenever a product needs to be
updated, or a solution changed,
that company’s consultants are
called in yet again.

If the product your consultant is
recommending has the potential to
create a real dependency on them,
either through the amount of
money spent (as in an ERP) or in
the knowledge of a language, make
sure you weigh all of your options
before you sign on the dotted line.

Development Tool

A development tool is a solid
option for quite a few reasons. It
allows you to capitalize on your
staff’s expertise, and at
the same time speeds up the
development process. But, there
are many different categories and
things you need to consider when
looking at development tools
including cost, ease of use,
flexibility, and extensibility. When
purchasing any Web development
tool, the latter two become
increasingly important.

In the past, the level of flexibility
available today was not an option,
and proprietary solutions were the
order of the day. And this is
precisely why so many businesses
find themselves with outdated
systems, and are nervous to move
forward. Don’t make the same
mistake twice by going with a
proprietary solution.

Flexibility and extensibility are
both critical when looking to the
future. Where will you go, and
how will you grow? Flexibility
comes into play in terms of
application deployment. Where
will you be able to use your
solution? What if you want your
solution to be deployable to

wireless devices? Would that ever
be a need? These questions are
important because as the
technology evolution moves
forward, it is important not to
place these applications on
another dead-end path, or they
will have to be rebuilt yet again.

A good Web development tool
should also build applications with
growth in mind. This is something
to take a good hard look at if you
are looking for a long-term
solution, and want to allow for
your company to be global. So, if
you’re looking for flexibility, you
need to examine architecture…and
if you’re looking for architecture,
you need to go n-Tier.

A good Web development tool

should build applications with

growth in mind…the best

method for allowing growth

in your systems is with

n-Tier architecture

n-Tier Architecture

The best method for allowing
growth in your systems is using “n-
tier architecture.” The original
concept with roots in the days of
client/server, had two
components, and was therefore
“two-tiered”. This was the
client/server version. The server
was one tier (the business logic
tier), and the client was the other
(the presentation or graphic user
interface tier). “Three-tier
architecture” incorporates the first
two-tiers and then adds a third-tier
(the database tier). n-Tier
architecture provides flexibility for
variable combinations of the above
tier types.

This architecture, in a nutshell,
breaks Web applications into three
components: a database
component, a presentation
component (GUI), and a business
logic component and the
advantages are many. To give you
a better idea of how it works, let’s
look at an example. Let’s say you
wanted to develop a reservations
system for a chain of hotels that
had rates and taxes varying from
state to state and city to city.
Well, the designer could make that
report look like the rest of your
site in the presentation
component. The database
programmer would know which
files to link in the database
component. The business logic
expert would program the pricing
structure calculations into the
business logic component.

If the pricing method changed next
year to double the state tax as a
resort fee in California and
Massachusetts the business logic
component could then be updated
without ever touching the other
two components, and the
application would remain
seamless. The changes would not
have to be duplicated for each
state’s application. Instead, the
changes made in the business logic
component would only affect the
screens using that particular
component. Or, perhaps the
designer decides to add a blue bar
across a page of the Web site. He
could change only the presentation
component, and the changes could
be made across the board. The
same applies to the database
component.

This “n-Tier” architecture is ideal
for maintaining your applications
going forward. The set up
eliminates errors, simplifies
change, and saves time because
each component is chaired by
persons with expertise in that tier.
It also allows for future changes
such as new languages, and new
looks, to be added, and it can save
you money on hardware.

How to Bring Your Business Applications to the Web

5

In the past, a program was self-
contained, and would need to be
duplicated for each of those
applications, taking up space, and
it would be required to be on each
machine where the application was
running. Now, the components of
an application could all reside on
one Web server, as in the past, or
one component could be in a box
in Arizona, one could be in Paris,
and one could be in Seoul, and still
work together. If the hotel
headquarters in Seoul wanted its
own presentation component (GUI)
to allow for the Korean language
version, and different database
component with Korean tariffs, it
could still use the same business
logic component as its Arizona
division, if it wanted. This
architecture provides for the
ultimate global possibilities.

Not all tools use n-tier architecture
in their design. Make sure you look
for one that does.

So, what kind of tool should I
use?

There are many different Web
development tools to choose from,
and keep in mind that there is no
perfect solution. But, using a
development tool that will deploy
to any platform puts the power and
control back into the hands of your
IT department, where it belongs.

In the category of Web
development tool products, there
seem to be two main software
camps: products using vendor-
specific languages, and products
that are menu-driven that can be
used without learning another
software language. So, what are
the pros and cons to each?

Pro-proprietary Tools

Those vendors who offer products
requiring you to learn and use
their proprietary development
language, offer developers the
bonus of putting another language

on their resume. These languages
are challenging to learn, and in
some circles can be a source of
pride among programmers and a
bartering chip in salary
negotiations. For the vendor, it
provides a viral marketing of sorts.
If you, as a developer, spend 6-9
months in training to learn a
vendor-specific language, and you
move companies, you will likely
encourage your new company to
purchase the software tool that
uses that language, and shows off
your skill set.

The downside to tools built in (and
requiring) proprietary software
language, is that they force the
user to have a certain dependence
on their vendor. Their time in
training is invested, the amount of
money they have in the software is
invested, and then any additional
“specialized” modules they need
to purchase for later projects or
for later upgrades must come from
the same company because the
language is incompatible with
other software pieces.

These modules are also priced
individually so any future needs
that crop up that aren’t covered
may require additional system
purchases.

If you want to handle the project
internally, you enjoy the challenge
of learning a new language, and
you have the timeframe to account
for staff training and learning
curve, then this is the solution for
you.

However, you also have to be
willing to accept that any expert-
level work in that software will
require an expert in that language,
and if the software vendor goes
out of business, you have no safety
net, and will need to look for
another solution. More and more
companies using proprietary
software are migrating toward
open-source code solutions to
prepare for the future.

Pro-Productivity Tools

The other tool option is to go with
a specifications-based, menu-
driven development tool. The
downside to this option is that if
you are a hard-core coder, you
never really have a need to tinker
with the code (although you
usually can). And, there is no
proprietary language to learn, so
no bartering chip in your salary
negotiations, no gold star on your
resume.

The plus side, though, is that these
software tools have an extremely
short learning curve, with no
languages to learn at all, so you
can be up and running in a matter
of days. Look for tools that write
applications in 100% open
languages like Java servlets.
Choosing a tool like that means
that if the software vendor ever
goes out of business, any number
of companies could support the
software. It also shortens the
project’s time to market. Imagine
being able to develop an
application for your Web site in
Java servlets simply by choosing
what you want off a menu and
hitting the enter button.

An additional bonus feature to look
for is a tool that will insulate you
from technology changes going
forward. If Java goes by the
wayside, a code generation tool
can insulate you from those bumps
in the road, and allow you to
automatically move (or with very
few changes) to the next level—
without a lot of fuss or muss.

This is the best solution for you if
you want to handle the project
internally, avoid vendor
dependencies or language-
incompatibility in the future, and
you want to get to the Web
extremely quickly.

How to Bring Your Business Applications to the Web

6

To sum up…

In summary, there are four basic
methods to leverage your current
legacy applications by bringing
them to the Web. You can use a
screen scraper method, you can
build your solutions in-house, you
can hire IT consultants to do the
job for you, or you could use a tool
to build your applications for you.

Whatever solution you choose, you
should look for one that fits your
budget, fits your schedule with
training and learning-curves, is
flexible in terms of platforms, and
databases, and allows for growth
on a global scale (we recommend
an n-tier architecture).

You also need to consider whether
or not you want to commit to a
proprietary language tool, or if
you’d feel more comfortable
moving to a menu-driven tool
written in a flexible language like
Java.

Regardless of which method you
choose, ultimately, it is most
important to know what direction
you are headed toward, and why.
Whether you are moving your
legacy apps over to the Web
because you would like to save
money on maintenance, gain a
competitive advantage over
another company, improve internal
communications, or increase
employee productivity; make sure
you have a clear goal in mind
before entering into the Web
world.

The more you clarify your own
needs, the more software vendors
and consultants can present you
with the clearest solutions for your
business.

m-PowerTM is Java-based and can run on virtually any operating system,
and access any database. It accelerates development by eliminating routine
infrastructure programming, giving you ready-to-deploy n-tier Java Web
applications in minutes…

mrc's m-Power development tools hit the Productivity
Sweet Spot between professional developer tools and
power end-users tools, and have been helping developers
be more productive for 25 years.

Why developers love it:
Among developers, m-Power and the mrc-Productivity Series span wide and
varied abilities. Since applications are created in 100% Java, expert
developers win because they can avoid tedium, developing their applications
quickly and easily-and they can customize any application to suit their
needs.

• No languages to learn, and no manual coding: Unlike most
development tools, you are not required to learn Java, JSP,
WebSphere or any 4GL.

• All of the capabilities, none of the hassle: Whether you are a
Java expert or an expert in RPG, COBOL or VB-you can call
previously built logic, work with complex analytics and calculations,
build robust enterprise-level business application systems, and
customize ERPs and the like...without any of the tedium of manual
coding.

• Teach it to code the way you code: Developers can even teach
m-Power to code Java custom to individual development styles. At
the same time, developers who are Java newbies and wish to learn
or are in the process of learning Java, can begin learning it as they
go using m-Power as a study tool.

• Shorten the process and deliver the best solution: Free up
your time for crucial IT matters by teaching end users to create
their own reports or applications. And to make sure that you are
delivering the right solutions and better fulfilling executive needs,
you can just send them a URL to mark progress as you go.

Why end users love it:
If you are an end user— you can easily create all of the reports or data
inquiries they could ever need, plus the capabilities to develop more
complex applications down the road.

• The interface is easy to use: If you've ever been on the Web,
using m-Power and the mrc-Productivity Series' development
menu is a piece of cake. You just follow a series of screens that
take you through the wizard-like Web interface from start to finish.

• All you really need to know is your business: You really just
need to know what kind of application you want to build, and
where to find the data files that you want to access. That's all. So,
once users become accustomed to the software, the capabilities
are there to create more complex business applications down the
road.

• Shortest learning curve in the industry: mrc recommends a 3
day training class to get a strong base, but you'll be building
applications your first day! Each tool is entirely menu-based, so
end users can create new applications in technologies that even
developers may not have had time to learn, such as Java.

Featured product

