
INTERMEDIATE SQL
GOING BEYOND THE SELECT

Created by Brian Duffey

http://www.mrc-productivity.com/Services/Brian_Duffey.html

WHO I AM

Brian Duffey
3 years consultant at michaels, ross, and cole

9+ years SQL user
What have I used SQL for?

ROADMAP
Introduction

1. Who I am
2. Roadmap
3. Basic SQL Review

Working with Data
1. Removing Data
2. Bringing in Data
3. Filtering Data
4. Transforming Data

Working with Objects
1. Creating Functions
2. Creating Programs
3. Creating Datasets
4. Improving Performance

ROADMAP
Introduction

1. Who I am
2. Roadmap
3. Basic SQL Review

Working with Data
1. Removing Data
2. Bringing in Data
3. Filtering Data
4. Transforming Data

Working with Objects
1. Creating Functions
2. Creating Programs
3. Creating Datasets
4. Improving Performance

BASIC SQL REVIEW

Data
Insert - Create
Select - Read
Update - Update
Delete - Delete

Object
Create
Drop

BASIC SQL REVIEW - DATA

Insert

Used to add new rows to the database
insert into NAMES (FIRST_NAME, LAST_NAME) values ('John', 'Smith');

into NAMES - object where data is being added
(FIRST_NAME, LAST_NAME) - fields for adding data
values ('John', 'Smith') - values being added

BASIC SQL REVIEW - DATA

Select

Used to query the database for data
Read-only

select * from NAMES where LAST_NAME = 'Smith' order by FIRST_NAME;

* - all fields, can also be a field list
from NAMES - object data is coming from
where LAST_NAME = 'Smith' - filtering out data
order by FIRST_NAME - sorting data by a field(s)

BASIC SQL REVIEW - DATA

Update

Used to modify data in one or more columns
update NAMES set FIRST_NAME = 'Jane' where LAST_NAME = 'Smith';

NAMES - object being updated
set FIRST_NAME = 'Jane' - updating a field(s) to a new value
where LAST_NAME = 'Smith' - setting which rows to update

BASIC SQL REVIEW - DATA

Delete

Used to remove rows from the database
delete from NAMES where LAST_NAME = 'Smith';

from NAMES - object being affected
where LAST_NAME = 'Smith' - rows to delete

BASIC SQL REVIEW - OBJECTS

Create

Used to add a new object to the database
create table MONTHS (..);

table - type of object to create
MONTHS - name of object
(..) - options for object

BASIC SQL REVIEW - OBJECTS

Drop

Used to remove an object from the database
drop table MONTHS;

table - type of object to remove
MONTHS - name of object

BASIC SQL REVIEW

Labeling

To simplify queries, you can rename parts of it
For instance, to rename a table, I can just put some identifier
after it, like below
Fields can also be renamed, by using the AS command
select * from NAMES A;

select LAST_NAME as SURNAME from NAMES;

ROADMAP
Introduction

1. Who I am
2. Roadmap
3. Basic SQL Review

Working with Data
1. Removing Data
2. Bringing in Data
3. Filtering Data
4. Transforming Data

Working with Objects
1. Creating Functions
2. Creating Programs
3. Creating Datasets
4. Improving Performance

WORKING WITH DATA

REMOVING REPEATED DATA
Sometimes a data set has data that is repeated. For instance,

when trying to get a list of all customers who ordered in a time
period.

select CUSTOMER from SALES where YEAR = 2013 order by CUSTOMER;

The above will return every line of sales in 2013, meaning a
customer could be in there zero, one, or many times!

WORKING WITH DATA

REMOVING REPEATED DATA
Instead, we can use a DISTINCT command

select distinct CUSTOMER from SALES where YEAR = 2013 order by CUSTOMER;

This returns results where no row is duplicated

All returned values are considered
select distinct CUSTOMER, ORDER_DATE, PRICE*AMOUNT from SALES
order by CUSTOMER;

WORKING WITH DATA

REMOVING REPEATED DATA
For specific values, as well as aggregation, we can use a GROUP

BY command
select CUSTOMER from SALES group by CUSTOMER order by CUSTOMER;

The above will return one line per customer, just like the distinct
statement

select CUSTOMER, max(ORDER_DATE), sum(PRICE*AMOUNT) from SALES
group by CUSTOMER order by CUSTOMER;

The above will still return one line per customer. Additionally it
will show the last order date, the last ORDER_DATE, as well as

the total sales of all orders.

Aggregation (MIN, MAX, SUM, AVG, COUNT) can be done with
or without GROUP BY

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
Sometimes a data set is missing information. For instance,

needing to get a customer's state
select * from SALES where YEAR = 2013;

The above will return every field in SALES, however there is no
state field in this table.

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
In order to grab data from a different table, we can do a JOIN
select * from SALES A join CUSTOMERS B on A.CUSTOMER = B.CUSTOMER
where YEAR = 2013;

The above will return every field in SALES as well as
CUSTOMERS

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

INNER JOIN
LEFT/RIGHT OUTER JOIN
FULL OUTER JOIN
CROSS JOIN
Exception joining
UNION (ALL)

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

INNER JOIN

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

LEFT/RIGHT OUTER JOIN

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

FULL OUTER JOIN

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

CROSS JOIN

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

Exception joining

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
There are several types of joins:

UNION (ALL)

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
What if we need data outside of the current data set? For
instance, we need a breakdown of number of orders for a

customer last year, plus their last order date.

select CUSTOMER, sum(1), max(ORDER_DATE)
from SALES
where YEAR = 2013
group by CUSTOMER;

The above will not work because the records are limited to 2013,
meaning any orders placed in 2014 are excluded.

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
To fix, we can use a sub-query

select CUSTOMER, sum(1),
(select max(B.ORDER_DATE) from SALES B where B.CUSTOMER = A.CUSTOMER)
from SALES A
where YEAR = 2013
group by CUSTOMER;

The above will still load all orders from 2013, however the sub-
query will go out and find the last order date for a customer.

WORKING WITH DATA

BRINGING IN ADDITIONAL DATA
Sub-queries are great for combining unrelated data

They can be used anywhere within the query, such as in the
WHERE clause

WORKING WITH DATA

FILTERING UNWANTED DATA
The WHERE clause is very useful for selecting on the desired

data

select * from SALES where AMOUNT < 20;

Filter on any field in the data set, or in a different related set (sub-
query), using boolean operators:

=
!=, <>
>, >=
<, <=
IS NULL, IS NOT NULL

WORKING WITH DATA

FILTERING UNWANTED DATA
There are also many other useful filters:

IN

select * from CUSTOMERS where STATE in ('FL', 'IL');

BETWEEN
select * from SALES where AMOUNT between 10 and 20;

LIKE

select * from CUSTOMERS where CUSTOMER like 'A%';

WORKING WITH DATA

FILTERING UNWANTED DATA
There may be times we need to filter aggregated data

The above will fail with an error as the WHERE clause can only
filter raw data, not the aggregate
Instead, use a HAVING clause, which is performed after the
GROUP BY:

select CUSTOMER, sum(1) from SALES
where sum(1) > 500 group by CUSTOMER;

select CUSTOMER, sum(1) from SALES
group by CUSTOMER having sum(1) > 500;

TRANSFORMING DATA

MAKING CONDITIONAL CHANGES
The CASE statement is very useful for changing values

select AMOUNT, case when AMOUNT > 20 then 'Good' else 'Bad' end from SALES
where YEAR = 2013;

You can have as many cases as you need, and everything is put
into one column for easy reference

The above breaks the AMOUNT field down into Good or Bad
values

TRANSFORMING DATA

USING DATABASE FUNCTIONS
There are many built-in functions each database supports

Some of the most common ones include things like:

Substring - getting a section of a string
Concatenation - joining two strings together
Casting - changing a value from one data type to another
Date-related functions - Getting the year of a date, number of
days between two dates, etc.

ROADMAP
Introduction

1. Who I am
2. Roadmap
3. Basic SQL Review

Working with Data
1. Removing Data
2. Bringing in Data
3. Filtering Data
4. Transforming Data

Working with Objects
1. Creating Functions
2. Creating Programs
3. Creating Datasets
4. Improving Performance

WORKING WITH OBJECTS

USER DEFINED FUNCTIONS
While each database has their own set of functions, there may
be times when you have other needs
The database will let you create a function to handle your own
values
You can pass in any number of values, do something with them,
and then return one value

WORKING WITH OBJECTS

USER DEFINED FUNCTIONS
create function ADD1 (NUMBER int)
 returns int
begin
 return NUMBER + 1;
end

The above creates a UDF called ADD1, which simply adds one
to some number
This function takes in one parameter, of type int(eger)
It returns an int value
All code happens in the begin..end section

WORKING WITH OBJECTS

USER DEFINED FUNCTIONS
create function GETSTATE (CUST char(25))
 returns char(2)
begin
 declare ST char(2);
 select STATE into ST from CUSTOMERS where CUSTOMER = CUST;
 return ST;
end

The above creates a UDF called GETSTATE
This function takes in one parameter, the customer name
It returns the state
This function uses a query to grab the state for a customer

WORKING WITH OBJECTS

USER DEFINED FUNCTIONS
Use these functions like a field value

The returned value is displayed

select AMOUNT, ADD1(AMOUNT) from SALES;

select CUSTOMER, STATE, GETSTATE(CUSTOMER) from CUSTOMERS;

WORKING WITH OBJECTS

STORED PROCEDURES
There will be times when you need a program
Stored procedures differ from functions in a couple ways:

They do not return any value
They cannot be called from a query
Their parameters can be modified

WORKING WITH OBJECTS

STORED PROCEDURES
create procedure CHANGEAMOUNT (in VAL int)
begin
 update SALES set AMOUNT = AMOUNT + VAL;
end

The above program simply adds some amount to the
AMOUNT field
Parameters can be IN, OUT, or INOUT

WORKING WITH OBJECTS

STORED PROCEDURES
Procedures are called
Usually this is done from some program, i.e. Java
Can also be done from the database/command line:

call CHANGEAMOUNT(1);

WORKING WITH OBJECTS

CUSTOM DATA SETS
When selecting data, the FROM clause is generally a table
However, you can use a sub-query to SELECT from:

The above returns a data set of all customers that have a name
starting with 'A'
We can now further select within this data set:

select CUSTOMER, CUSTOMER_NUMBER, STATE from CUSTOMERS
where CUSTOMER like 'A%';

select * from (
select CUSTOMER, CUSTOMER_NUMBER, STATE from CUSTOMERS
where CUSTOMER like 'A%'
) A where STATE = 'OK';

WORKING WITH OBJECTS

CUSTOM DATA SETS
Alternatively, we can make this data set more "permanent"
Views are dynamic data sets based upon some query

The above creates an object that stores all rows in
CUSTOMERS that have a name starting with 'A'
This can then be used like a table:

create view A_CUSTOMERS as
select CUSTOMER, CUSTOMER_NUMBER, STATE from CUSTOMERS
where CUSTOMER like 'A%';

select * from A_CUSTOMERS where STATE = 'OK';

WORKING WITH OBJECTS

IMPROVING PERFORMANCE
The less rows/columns selected, the quicker the query will run
Use WHERE and HAVING clauses to limit irrelevant data
Use INNER JOINs to only select matching data
Don't use * when you only need a few fields

WORKING WITH OBJECTS

IMPROVING PERFORMANCE
Second, after first optimizing your query, try indexes
Indexes are like a table of contents for your database
Types of indexes:

UNIQUE
Covering
Clustered

Sample index:

Covering:

Clustered:

create index MY_INDEX on NAMES(FIRST_NAME, LAST_NAME);

select FIRST_NAME, LAST_NAME from NAMES;

select FIRST_NAME, LAST_NAME, AGE from NAMES;

WORKING WITH OBJECTS

IMPROVING PERFORMANCE
So, why not create a bunch of indexes?

Most tables won't have every column selected on
All non-read statements become much slower, i.e.
insert/update/delete
Indexes take up disk space and memory

Instead, use database tools like EXPLAIN to help you optimize
your query and build the proper indexes

LINKS
My information:

Slides:

Other resources:

MySQL
DBVisualizer

www.mrc-productivity.com/Services/Brian_Duffey.html

www.mrc-
productivity.com/Duffey/slides/IntermediateSQL.html

www.mrc-productivity.com/Duffey/COMMON14.html

http://www.mrc-productivity.com/Services/Brian_Duffey.html
http://www.mrc-productivity.com/Duffey/slides/IntermediateSQL.html
http://www.mrc-productivity.com/Duffey/COMMON14.html

CREDITS
http://www.dbvis.com/
http://blog.codinghorror.com/a-visual-explanation-of-sql-
joins/
http://www.sitepoint.com/using-explain-to-write-better-
mysql-queries/

http://www.dbvis.com/
http://blog.codinghorror.com/a-visual-explanation-of-sql-joins/
http://www.sitepoint.com/using-explain-to-write-better-mysql-queries/

