
 1

When the top brass at mrc met to discuss the

company's overall technical strategy and determine

where mrc's software products were headed, their

primary focus was on how mrc would shape future

development tactics to fit this new plan.

At the time, the mrc-Productivity Series—

mrc's original application development tool

suite—was still largely character-based

(Figure A) and tied

inextricably to IBM 's

iSeries (AS/400) platform.

But, despite these legacy

underpinnings, the mrc-

Productivity Series also

offered its users Web

capabilities that allowed

them to develop Java

servlet (server-side Java)

based Web applications

that were platform

independent. The mrc team

decided they wanted to

take the product to the

next level and make the

mrc-Productivity Series an

independent solution.

Step 1:
Determine
direction

You can't plan a route if you aren't sure

where you're headed, so the first step is

determining direction.

5
Getting
 Java

Practical

Steps

in

to

How mrc turned its legacy software tool, the mrc-
Productivity Series into the powerful Java m-Power™

 2

mrc knew that it wanted its modernized software

to be Web-based, and platform- and database-

independent. And they determined that Java was

the best way to accomplish this goal. Another

option available is Microsoft's .NET. However,

when mrc completed an analysis of Java and

.NET architecture, industry support, and open

capabilities, Java beat .NET in every category.

(Figure B)

Step 2: Determine your
starting point.

You also can't plan a route if you're not

sure where to start.

Now, unless you are a software vendor like

mrc, or business application package vendor,

you're probably not going to need to bring ALL

of your current applications to Java. So, the

best plan is to figure out exactly where your

needs lie and break your project up into

related application groupings, or departmental

needs, and prioritize based

on timeframe, scope,

technical complexity, and

ROI.

In mrc's case, because the

overall project was the

modernization of a full

software tool, their analysis

had to include all of the

applications running within

the tool. Your analysis,

most likely, will not.

Free your mind, and

the rest will follow.

You may need to change the way you think

about development. Traditionally, applications

were often built as one long block of code with

multiple screens within each program. One

reason for designing applications this way was

that processors originally were able to process

the code within one long program at a much

faster speed than opening and closing many

individual smaller programs.

Today, that is no longer the case. Instead, the

recommended architecture is to modularize the

code into smaller programs and interlock them

to build larger application systems. That

means re-

architecting your

applications. mrc

calls this

technique the "building block" or Lego

approach: creating smaller individual programs

(like Legos) and then using (and re-using

them) by linking or "snapping" them in myriad

configurations to create robust and complex

business systems.

Figure A: This is what the original mrc-Productivity Series' text-
based interface looked like.

 3

Figure B: This table compares Java and .NET based on architecture, industry support,

 proprietary v. open platform choices, and technological longevity.

Java

.NET

W
h

e
re

 i
t

ru
n

s

Anywhere.

Java's n-tier architecture allows for platform- and

database-independence. n-tier applications are

made up of 3 or more modules or tiers that can

live anywhere independently, but work together

as one seamless application.

Only .NET.

.NET only allows you to run on the .NET

proprietary operating system, and serve

applications from the .NET application server.

Additionally, it has difficulty accessing outside

databases such as Oracle or Sybase.

W
h

o
 s

ta
n

d
s

b
e
h

in
d

 i
t?

All the major players.

…with the exception of Microsoft. Java is vendor-

independent and privy to a community brain

trust of thousands of developers and users.

Bugs are solved more quickly, and the more that

open source code moves into the enterprise, the

greater transparency—and accountability—there

will be in development.

Only Microsoft.

.NET is dependent on one vendor, Microsoft.

This is also the software vendor renowned for

bugs, viruses, poor support, and serial

upgrades. mrc did not want its enterprise-level

software locked into that prospect.

O
p

e
n

 o
r

C
lo

se
d

?

Open.

Java's APIs and source code are open to

everyone. This gives the marketplace a push

toward variety and promotes free enterprise.

Closed.

.NET's source code is proprietary and under

tight wraps, and their APIs are not only

proprietary, but they are actually in the

process of pursuing a patent to shut out

competition. Software solutions are limited

to Microsoft-sanctioned options.

Li
fe

 E
x
p

e
ct

a
n

cy
?

Wide industry support points to long-life.

Not only do all the major players back it—with

the exception of Microsoft—but there's a steady

stream of new companies, products, and

users/new college graduates flocking to the

platform daily.

Microsoft-dependent.

At the end of the day, .NET's longevity, as with

any proprietary software, is entirely dependent

on the whims of, or management of, Microsoft.

Additionally, users who choose this solution are

needlessly locking themselves into proprietary

licensing and contracts.

Getting to Java in 5 Practical Steps

 4

So, you need to plan your re-architecture.

Start by thinking of your new Web applications

as one program per screen. To get your

bearings, it's important to go through and

measure each project or application grouping

by how many total screens you'll need rather

than how many individual programs you

currently have.

For mrc's project, the company determined

they had about 263 screens to deal with.

 Now, rank your screens from easy to

difficult. "Some programs are just simpler

than others," explains Brian Crowley, mrc's

Director of Development. "For example, lists of

items in a database file, or an application for

maintaining one file at a time. These are easy

screens. But then, there are those that don't fit

a standard look, or have more complicated

code behind them. These are the difficult

screens. The good news is, when you actually

go through your application base, you'll

probably find that the vast majority of

programs fall into the easy screen category."

In mrc’s case, 209 of the 263 screens fit into

the "easy" category.

Then, determine your easy/difficult

ratio so you can form a plan of attack. If

209 out of 263 of mrc's screens are easy,

that covers 80% of the project. This 80/20

easy-difficult ratio, is mrc's ratio. However,

mrc is comparing its redevelopment of a

complex legacy software tool to the average

application development project. It should

be noted that the vast majority of most

businesses will have a much easier time of it

than mrc, and their easy/difficult ratio will

likely be looking more like a 95/5 ratio.

But, you’ll need to determine that for

yourself.

Step 3: Improve
Productivity

Before you start any project, you need to

select the tools you will need to get the job

done. Think of it as the Home Depot run

before that weekend warrior project you've

been putting off.

mrc knew the easiest way to accomplish

their end-goal was to use their own tool, the

mrc-Productivity Series, to do the majority of

the modernization. Remember, even though

the mrc-Productivity Series had a character-

based (green screen) interface at the time,

the tool was already adept at building Java

servlet graphical Web applications.

One of the advantages to using the mrc-

Productivity Series is that it uses fully

customizable templates. These are built to

not only deploy a Web-based GUI (Graphic

User Interface), but to also separate that

interface from the application logic and

database commands into J2EE (Java servlet)

applications built with n-tier architecture.

Java's n-tier architecture is what allows for

true platform- and database-independence.

n-tier applications are made up of 3 or more

modules or tiers that can live anywhere

independently, but work together as one

seamless application.

Getting to Java in 5 Practical Steps

 5

Benefits of using the

mrc-Productivity Series to create

Java servlets:

• Save time and money: By using the

mrc-Productivity Series to take care of

modernizing the vast majority of your

applications, you are saving years in

development time through mrc's

template-based code generator. And,

even if you later choose to learn Java,

or hire a Java developer…you're only

paying for a fraction of the applications

you would have had to manually

develop otherwise. That adds up to

huge cost-benefits.

• Freedom from mrc: When mrc says

that you are free from vendors, they

include themselves. m-Power™ and

mrc-Productivity Series applications

are written in 100% modifiable Java.

All of your applications are pure Java

applications as if you wrote them by

hand yourself. And, because of mrc’s

Open Template Technology (OTT), if

you have a particular way of coding

you prefer, you can actually teach the

mrc-Productivity Series and m-Power™

to write the code exactly as you like it.

• Reduce risk: You can safely

modernize the majority of your

applications in Java without fear of

breaking anything, and without

knowing Java or performing any

manual coding. As you build new Java

applications, you can continue to call

your time-tested legacy code (logic,

e.g.) as an "external object" behind the

scenes. That means you can quickly

deliver the Web interface your users

have been demanding. And, then, if

you choose to rebuild this logic in Java,

you can just swap out this legacy

object with the new Java code, and

users are none the wiser. It's

seamless.

• Built-in Java education: mrc has a

hidden bonus in that you gain real

exposure to Java, its structure, and

how it works. The accessibility you

have to the underlying Java source

code can start you and your

development team well on your way to

learning Java as you use it, giving you

yet another added advantage on the

road to modernization.

Step 4: Move to the Web

Within each development phase, it is important

to set comprehensive, and reachable goals.

mrc first addressed the 209 "easy" screens to

bring them 80% closer to the first part of their

goal to create a Web interface for the mrc-

Productivity Series in Java servlets. They called

this their "BED" interface, for "Browser-

Enhanced Development."

This first 80% took one mrc developer

just four months to complete.

The second part required addressing the

remaining 54 screens, or other 20%, of the

Getting to Java in 5 Practical Steps

 6

project that were a little more difficult. (mrc

considered difficult screens to be those with

multiple lists, complex calculations,

complicated SQL logic, maintaining unrelated

data at once, etc.)

This second part, for the remaining 20% of this

BED Interface goal, took mrc 9 developer-

months to complete.

If mrc had developed this by hand, it would

have taken about 40 months to get through

the first 80% and another 17 months to get

through the remaining screens. Manual

development total project time: 57 months or

over 4-1/2 years. (Figure C)

By using the mrc-Productivity Series, they

developed 80% of their Java applications in

four months and followed up with the

remaining 20% of their applications (54

screens) in the next 9 months. mrc's total

project time using a tool: 13 months or 1 year

and 1 month. (Figure D)

That's a timesavings of 90%.

There are many benefits to this

stage of Moving to the Web:

• Save money on training: Easier to

train employees on an intuitive Web

interface than a complex character-

based system. Most incoming

employees have already had

experience with Web sites, navigation,

and point-and-click menus.

• Easier to Use/Access: Developers

and users can access applications

remotely and securely via a password-

 54

40 57

0 60 15 30 45

209

Figure C: This diagram represents mrc's Phase 1, if mrc’s developer had elected to develop without the mrc-
Productivity Series.

80% 20%

(in months)

4 13

209 54

0 60 15 30 45

80% 20%

Figure D: This diagram represents mrc's Phase 1, the actual timeline. It took one mrc developer just four months
to modernize 80% of mrc's applications using the mrc-Productivity Series…and the total development time to get to
mrc's BED interface took just 13 months.

(in months)

Getting to Java in 5 Practical Steps

 7

protected Web interface from any

computer in the world with a Web

browser.

• Better Functionality: A graphical

Web interface improves functionality,

allowing links to online manuals,

service forms, product photos, links to

maps/directions, even how-to

videos…options that simply can't exist

in character-based solutions.

• Relieve IT pressure: Since any

legacy code still involved is behind the

scenes at this point, users are

generally happy to have a fast and

efficient Web interface, which removes

most of the immediate pressure on IT.

This allows you time to begin learning

Java, or figure out your next step if

you decide to move toward full

portability.

Most businesses could probably stop at this

point. Unless there is an immediate desire to

change your current platform, or to integrate

disparate data systems, getting to this stage

does the trick for the vast majority of IT

departments.

That means getting to your final destination in

1/10 of the time. Just imagine the additional

time savings if your projects lean toward the

95/5 easy/difficult split.

In mrc’s case, however, because these

applications were all part of a larger solution,

mrc needed to move everything to Java in

order to offer a fully portable product. For

instance, mrc's code-generator program, which

is the workhorse behind the mrc-Productivity

Series, was still written in RPG entering this

stage.

That meant it could only still run on the

iSeries. So, in order to make their software

truly platform- and database-independent, this

RPG component would need to be manually

written in Java.

Note: mrc's BED interface was still able to

use its RPG-based code generator

throughout the modernization process without

any interruption because the generator

program is called as an external object.

Once written, the new Java-based code

generator program seamlessly replaces its RPG

counterpart behind the scenes…there is no

downtime and no one is the wiser.

mrc counted 35 RPG-based stored procedures

that needed to be rewritten in Java, and some

back-end batch logic that needed to be

recreated as well. But, because of all the prior

work of the mrc-Productivity Series, this stage

could be handled as a simple development task

list.

Step 5: Achieve Full
Portability
For this last little bit, to get full portability, you

will need to know Java, or hire someone who

does. The difference with using the mrc-

Productivity Series is, by the time you get to

this stage you have just a fraction of the

manual coding you would have to do

Getting to Java in 5 Practical Steps

 8

otherwise. This makes a world of difference to

both timeframe, and budget.

For mrc, this last stage took 19 months. A

word of warning…this was with an experienced

Java developer, so if you are new to Java, or

you are hiring a consultant, you will need to

factor the experience level of the Java

developer into the timeframe.

Benefits to Full Portability:

• True control. Access any

configuration of databases and

platforms, you need to get to the truth

about your business. And extend your

hardware via controlled load balance.

Don’t let technology run you, when you

can run technology.

• Freedom from vendors. No longer

rely on any hardware or software

vendor, or operating system or

database. Full portability offers a way

for you and/or your customers to

determine the most cost-effective

methods of running the technology

side of business.

Even faster response times. Without the

additional legacy calls within a program, Java

servlets will access database information at

lightning speeds, and response-time is

unprecedented.

mrc’s final result?
m-Power™

m-Power™ is a Java-based application

development tool and now, without RPG calls,

it is fully portable. It accelerates development

by eliminating routine infrastructure program-

ming, giving you ready-to-deploy n-tier Java

Web applications in minutes. (Figure E)

Because of the n-tier architecture built into m-

Power, it can also be served from one platform

while building applications over databases that

might live on many other platforms. Run it on

Linux, OS/400, Unix, Windows, and access

Oracle and DB2 and MySQL at the same

time…it’s entirely up to you.

Additionally, because the mrc-Productivity

Series and m-Power™ develop applications in

Figure E: This figure is the new graphical Java-based Web interface of m-Power's menu, compared
here, next to the original text-based menu found in Figure A.

Getting to Java in 5 Practical Steps

 9

J2EE automatically, mrc has given itself, and

its customers, a real advantage in the future

when it comes to integrating business

processes. This distinction paves the way for

using Enterprise JavaBeans or EJBs, achieving

the added bonus of extended scalability.

Conclusion
In the end, there is no silver bullet. By

developing its own 5 step plan, and using the

mrc-Productivity Series to accelerate the

process, mrc was able to modernize its

complex development software product in

record time. Whatever path you choose to take

will necessarily be unique, and custom to your

business needs.

If you're interested in exploring mrc’s method,

or would just like some help getting started,

mrc offers free consultations, and can help you

to determine how many screens you'll need

and what categories these screens will fall into

to get the ball rolling.

Just visit here to get started:

http://www.mrc-productivity.com/infoform.html

 555 Waters Edge, Suite 120

 Lombard, IL 60148

 630.916.0662

 mrc@mrc-productivity.com

 http://www.mrc-productivity.com

